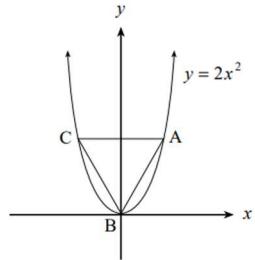
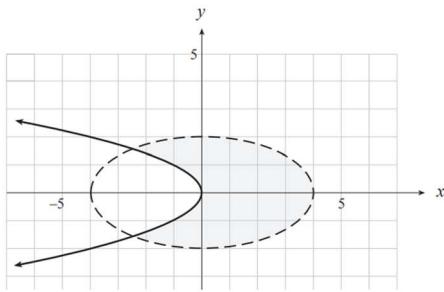


Name: _____

Date: _____


<p>1. Determine an equation of the circle with centre $(3, -2)$ and radius 4.</p> <p>A. $(x-3)^2 + (y+2)^2 = 4$ B. $(x+3)^2 + (y-2)^2 = 4$ C. $(x+3)^2 + (y-2)^2 = 16$ D. $(x-3)^2 + (y+2)^2 = 16$</p>	<p>2. Find the midpoint of the line segment joining $P(-8, 4)$ and $Q(12, -20)$.</p> <p>A. $(-10, 12)$ B. $(-2, 8)$ C. $(2, -8)$ D. $(10, -12)$</p>
<p>3. Which conic is represented by the equation $4x^2 - 4y^2 + 8x - 24y - 9 = 0$?</p> <p>A. circle B. ellipse C. parabola D. hyperbola</p>	<p>What is the domain of the relation $(x-1)^2 + (y+3)^2 = 25$?</p> <p>A. $-4 \leq x \leq 6$ B. $-6 \leq x \leq 4$ C. $-24 \leq x \leq 26$ D. $-26 \leq x \leq 24$</p>
<p>Which conic is described by the equation $4x^2 + 4y^2 - x + y = 0$?</p> <p>A. circle B. ellipse C. parabola D. hyperbola</p>	<p>Determine an equation of a rectangular hyperbola with centre at $(-2, 0)$ and one vertex at $(4, 0)$.</p> <p>A. $(x-2)^2 - y^2 = 16$ B. $(x+2)^2 - y^2 = 16$ C. $(x-2)^2 - y^2 = 36$ D. $(x+2)^2 - y^2 = 36$</p>
<p>What is the length of the minor axis of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$?</p> <p>A. 3 B. 4 C. 6 D. 8</p>	<p>Determine the value of k ($k > 0$) so that the conjugate axis of the hyperbola $x^2 - \frac{y^2}{k} = 1$ is 2 units longer than the minor axis of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.</p> <p>A. 8 B. 10 C. 16 D. 25</p>
<p>Change the following equation to standard form.</p> $2x^2 + y^2 - 12x - 10 = 0$ <p>A. $\frac{(x+3)^2}{4} + \frac{y^2}{8} = 1$ B. $\frac{(x-3)^2}{4} + \frac{y^2}{8} = 1$ C. $\frac{(x+3)^2}{14} + \frac{y^2}{28} = 1$ D. $\frac{(x-3)^2}{14} + \frac{y^2}{28} = 1$</p>	<p>Write $9x^2 + y^2 + 36x - 9 = 0$ in standard form.</p> <p>A. $\frac{(x+2)^2}{13} + \frac{y^2}{13} = 1$ B. $\frac{(x+2)^2}{3} + \frac{y^2}{27} = 1$ C. $\frac{(x+2)^2}{5} + \frac{y^2}{45} = 1$ D. $\frac{(x+2)^2}{9} + \frac{y^2}{27} = 1$</p>
<p>A point P moves such that it is always equidistant from the point $F(2, 5)$ and the line given by $y = 1$. Find an equation of this locus and write it in standard form. (3 marks)</p>	<p>Determine the vertices of $\frac{(x+2)^2}{4} - \frac{(y-1)^2}{9} = -1$.</p> <p>A. $(-2, -2)$ and $(-2, 4)$ B. $(0, 1)$ and $(-4, 1)$ C. $(0, -1)$ and $(4, -1)$ D. $(2, 2)$ and $(2, 4)$</p>

<p>A point $P(x, y)$ moves such that it is always the same distance from the point $F(0, 2)$ as it is from the line defined by $y = -2$. Identify the locus.</p>	<p>Determine all values for r ($r > 0$) such that the following system has exactly 2 different real solutions:</p> $\frac{x^2}{9} + \frac{y^2}{4} = 1$ $x^2 + y^2 = r^2$ <p>A. $r = 2$ B. $r < 2$ C. $r = 2$ or $r = 3$ D. $2 < r < 3$</p>
<p>Determine the equation of the ellipse with vertices of $(3, 6)$ and $(3, -4)$ and minor axis of length 6.</p> <p>A. $\frac{(x-3)^2}{9} + \frac{(y-1)^2}{25} = 1$ B. $\frac{(x+3)^2}{9} + \frac{(y+1)^2}{25} = 1$ C. $\frac{(x-3)^2}{25} + \frac{(y-1)^2}{9} = 1$ D. $\frac{(x+3)^2}{25} + \frac{(y+1)^2}{9} = 1$</p>	<p>Find all real solutions for the following system.</p> $x^2 + y = 4$ $x^2 - y^2 = 4$ <p>A. $(-2, 0), (2, 0)$ B. $(-\sqrt{5}, -1), (\sqrt{5}, -1)$ C. $(-\sqrt{5}, 1), (\sqrt{5}, 1), (-2, 0), (2, 0)$ D. $(-\sqrt{5}, -1), (\sqrt{5}, -1), (-2, 0), (2, 0)$</p>
<p>Determine the area of the rectangle formed by the horizontal and vertical tangents to the conic $\frac{(x-1)^2}{9} + \frac{(y+2)^2}{16} = 1$.</p> <p>A. 12 square units B. 24 square units C. 48 square units D. 144 square units</p>	<p>Determine the vertex of the parabola given by the equation $4x - 8 = y^2 + 4y$.</p> <p>A. $(-1, 2)$ B. $(5, 2)$ C. $(1, -2)$ D. $(0, -4)$</p>
<p>A point $P(x, y)$ moves such that it is always equidistant from the point $F(3, 2)$ and the line $y = -1$. Which equation represents this locus?</p> <p>A. $(x-3)^2 + (y-2)^2 = (y+1)^2$ B. $(x-3)^2 + (y-2)^2 = (x+1)^2$ C. $(x+3)^2 + (y+2)^2 = (y-1)^2$ D. $(x+3)^2 + (y+2)^2 = (x-1)^2$</p>	<p>A point P moves such that it is always equidistant from 2 fixed points. Identify the locus.</p> <p>A. line B. circle C. ellipse D. parabola</p>
<p>A rectangular hyperbola with centre $(2, 1)$ has one vertex at $(2, 7)$. What is its equation?</p> <p>A. $\frac{(x-2)^2}{36} - \frac{(y-1)^2}{36} = 1$ B. $\frac{(x-2)^2}{36} - \frac{(y-1)^2}{36} = -1$ C. $\frac{(x-2)^2}{49} - \frac{(y-1)^2}{49} = 1$ D. $\frac{(x-2)^2}{49} - \frac{(y-1)^2}{49} = -1$</p>	<p>Which of the following values for the constants A and B will cause the equation $Axy + B = 0$ to represent a rectangular hyperbola with vertices on the line $y = -x$?</p> <p>A. $A > 0, B < 0$ B. $A > 0, B > 0$ C. $A < 0, B > 0$ D. $A = 0, B < 0$</p>
<p>Graph the following system of inequalities:</p> $(x-3)^2 + y^2 > 36$ $x^2 - y^2 \leq 9$	<p>A parabolic arch supports a bridge over a canal, as shown in the diagram. If an equation of the arch is $y = -\frac{1}{30}x^2 + 5$, determine the width w of the canal. (Accurate to 2 decimal places.)</p>

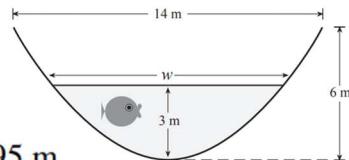

<p>Determine the measure of the acute angle formed by the intersection of the asymptotes of the hyperbola $\frac{x^2}{36} - \frac{y^2}{16} = 1$. (accurate to 1 decimal place)</p> <p>A. 47.9° B. 56.3° C. 66.7° D. 67.4°</p>	<p>A sports stadium has a semi-elliptical dome for its roof. If its maximum height is 50 m and its span is 200 m, how high is the dome at a point 72 m from the centre? (Accurate to 1 decimal place.) (3marks)</p>
<p>Determine the distance between the vertices of the hyperbola $xy = 6$.</p> <p>A. $2\sqrt{6}$ B. $4\sqrt{6}$ C. $2\sqrt{3}$ D. $4\sqrt{3}$</p>	<p>Which system describes the shaded region in the diagram below?</p> <p>A. $x^2 + y^2 \leq 4$ $4x^2 + 25y^2 \leq 100$ B. $x^2 + y^2 \geq 4$ $4x^2 + 25y^2 \geq 100$ C. $x^2 + y^2 \leq 4$ $4x^2 + 25y^2 \geq 100$ D. $x^2 + y^2 \geq 4$ $4x^2 + 25y^2 \leq 100$</p>
<p>Graph the solution of the following system of inequalities on the grid provided.</p> $(x - 2)^2 + (y + 3)^2 > 25$ $x \leq -(y + 3)^2 + 4$	<p>Which of the following graphs best represents $\frac{x^2}{16} - \frac{y^2}{4} = -1$?</p> <p>A. </p> <p>B. </p> <p>C. </p> <p>D. </p>
<p>Points ABCD are collinear with C as midpoint of AD, and B as midpoint of AC. Determine the coordinates of B if A has coordinates $(-3, 7)$ and D has coordinates $(3, -5)$.</p> <p>A. $(-1.5, 4)$ B. $(-1.5, 3)$ C. $(1.5, 1)$ D. $(1.5, 4)$</p>	<p>Determine an equation for the set of all points which are 3 times as far from the point $(0, 5)$ as they are from the point $(-1, 2)$.</p> <p>A. $3\sqrt{x^2 + (y+5)^2} = \sqrt{(x-1)^2 + (y+2)^2}$ B. $3\sqrt{x^2 + (y-5)^2} = \sqrt{(x+1)^2 + (y-2)^2}$ C. $\sqrt{x^2 + (y+5)^2} = 3\sqrt{(x-1)^2 + (y+2)^2}$ D. $\sqrt{x^2 + (y-5)^2} = 3\sqrt{(x+1)^2 + (y-2)^2}$</p>
<p>A bridge over a river is supported by a parabolic arch which is 100 m wide at its base. If the maximum height of the arch is 10 m, determine which equation could represent the arch.</p> <p>A. $y = -0.2x^2$ B. $y = -0.1x^2$ C. $y = -0.001x^2$ D. $y = -0.004x^2$</p>	<p>The equation $Ax^2 + By^2 + Cy = 1$ represents an ellipse (not a circle). If $A > 0$ and $B > 0$, what conditions must be satisfied if this ellipse has its minor axis on the x-axis?</p> <p>A. $C \neq 0$ and $A > B$ B. $C \neq 0$ and $A < B$ C. $C = 0$ and $A > B$ D. $C = 0$ and $A < B$</p>
<p>How many points of intersection are there for the following system?</p> $x^2 + y^2 = 1$ $y = \sqrt{x}$ <p>A. 1 B. 2 C. 3 D. 4</p>	<p>At what point(s) will the graph of $x^2 - y^2 = 16$ intersect the graph of $x^2 + 4x + y^2 = 0$?</p> <p>A. $(-4, 0)$ B. $(-4, 0), (4, 0)$ C. $(-4, 0), (4, 0), (2, 2\sqrt{3})$ D. $(-4, 0), (4, 0), (2, 2\sqrt{3}), (2, -2\sqrt{3})$</p>

Points A, B, and C are on the parabola $y = 2x^2$ and ΔABC is equilateral. Determine the x-coordinate of point A.

A. $\frac{\sqrt{3}}{2}$
 B. $\sqrt{3}$
 C. 2
 D. $2\sqrt{3}$

Which system describes the shaded region shown below?

A. $\frac{x^2}{16} + \frac{y^2}{4} > 1$
 $x \geq -y^2$
 B. $\frac{x^2}{16} + \frac{y^2}{4} < 1$
 $x \geq -y^2$
 C. $\frac{x^2}{16} + \frac{y^2}{4} < 1$
 $x \leq -y^2$
 D. $\frac{x^2}{16} + \frac{y^2}{4} > 1$
 $x \leq -y^2$


Determine all real ordered pairs that satisfy the following system:

$$y^2 - x^2 = 16$$

$$y = \frac{6}{x}$$

(Give answers that are exact or accurate to 2 decimal places.)

A canal has a cross section that is in the shape of a parabola. The width of the canal at the top is 14 m and the maximum depth of the canal is 6 m, as shown in the diagram. The depth of the water at its deepest point is 3 m. Determine the width, w , of the water surface.

A. 4.95 m
 B. 7.86 m
 C. 9.90 m
 D. 10.41 m

Determine all values for k such that the following system will have exactly 2 different real solutions.

$$(x-2)^2 - \frac{(y+1)^2}{9} = 1$$

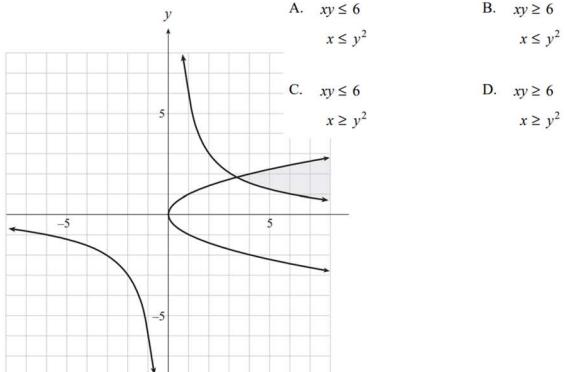
$$x = (y+1)^2 + k$$

A. $1 < k < 3$
 B. $k < 1$ or $k > 3$
 C. $-1 < k < 5$
 D. $k < -1$ or $k > 5$

Determine the slopes of the asymptotes of $\frac{(x-1)^2}{4} - \frac{y^2}{16} = 1$.

A. $\pm \frac{1}{4}$
 B. $\pm \frac{1}{2}$
 C. ± 2
 D. ± 4

A hyperbola has vertices at $(1, -4)$ and $(1, 8)$. If the asymptotes have slopes ± 2 , determine the equation of the hyperbola in standard form. (3 marks)


A pair of real numbers (a, b) with $a^2 + b^2 \leq \frac{1}{4}$ is chosen at random. If p is the probability that the curves with equations $y = ax^2 + 2bx - a$ and $y = x^2$ intersect, then $100p$ is closest to

(A) 65 (B) 69 (C) 53 (D) 57 (E) 61

Change $3y^2 + 6y - x - 3 = 0$ to standard form.

A. $x = 3(y-1)^2$
 B. $x = 3(y+1)^2 - 4$
 C. $x = 3(y+1)^2 - 6$
 D. $x = 3(y+1)^2 - 9$

Which system of inequalities represents the shaded region?

<p>Solve the following system algebraically. Express all solutions as ordered pairs. (3 marks)</p> $x^2 + y^2 = 25$ $x = y^2 - 5$	<p>Suppose that on a parabola with vertex V and a focus F there exists a point A such that $AF = 20$ and $AV = 21$. What is the sum of all possible values of the length FV?</p> <p>(A) 13 (B) $\frac{40}{3}$ (C) $\frac{41}{3}$ (D) 14 (E) $\frac{43}{3}$</p>
<p>Determine an equation for the ellipse that has vertices at $(2, 2)$ and $(-10, 2)$ and is tangent to the line $y = 5$.</p> <p>A. $\frac{(x+4)^2}{36} + (y-2)^2 = 1$ B. $\frac{(x+4)^2}{36} + \frac{(y-2)^2}{9} = 1$ C. $\frac{(x-2)^2}{9} + \frac{(y+4)^2}{36} = 1$ D. $(x-2)^2 + \frac{(y+4)^2}{36} = 1$</p>	<p>A circle is inscribed in the quadrant I sector of circle $x^2 + y^2 = 36$. If A and B represent the areas of the indicated regions, determine an expression for the area of region C.</p> <p>A. $\frac{9\pi - A - B}{2}$ units2 B. $9\pi - A - B$ units2 C. $\frac{36\pi - A - B}{2}$ units2 D. $36\pi - A - B$ units2</p>

<p>A circle of radius r passes through both foci of, and exactly four points on, the ellipse with equation $x^2 + 16y^2 = 16$. The set of all possible values of r is an interval $[a, b)$. What is $a + b$?</p> <p>(A) $5\sqrt{2} + 4$ (B) $\sqrt{17} + 7$ (C) $6\sqrt{2} + 3$ (D) $\sqrt{15} + 8$ (E) 12</p>
<p>For how many integer values of k do the graphs of $x^2 + y^2 = k^2$ and $xy = k$ not intersect?</p> <p>(A) 0 (B) 1 (C) 2 (D) 4 (E) 8</p>

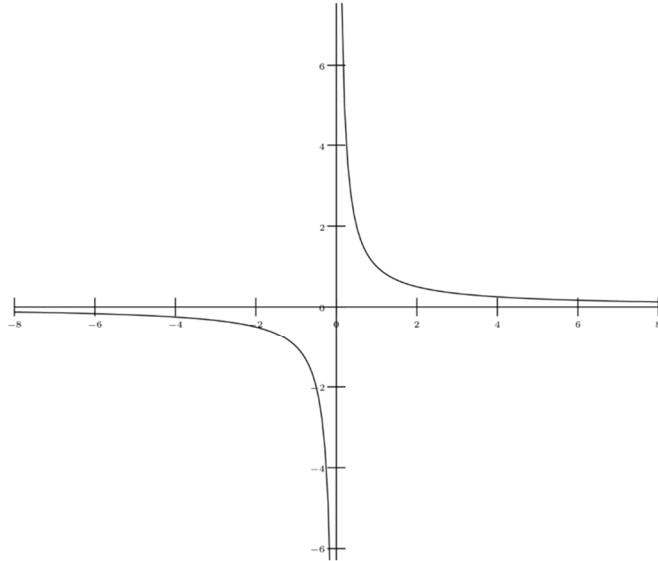
<p>Circles with centers $(2, 4)$ and $(14, 9)$ have radii 4 and 9, respectively. The equation of a common external tangent to the circles can be written in the form $y = mx + b$ with $m > 0$. What is b?</p> <p>(A) $\frac{908}{119}$ (B) $\frac{909}{119}$ (C) $\frac{130}{17}$ (D) $\frac{911}{119}$ (E) $\frac{912}{119}$</p>	
---	--

Rectangle $ABCD$ has area 2006. An ellipse with area 2006π passes through A and C and has foci at B and D . What is the perimeter of the rectangle? (The area of an ellipse is $ab\pi$ where $2a$ and $2b$ are the lengths of the axes.)

(A) $\frac{16\sqrt{2006}}{\pi}$ (B) $\frac{1003}{4}$ (C) $8\sqrt{1003}$ (D) $6\sqrt{2006}$ (E) $\frac{32\sqrt{1003}}{\pi}$

Let a , b , x , and y be real numbers with $a > 4$ and $b > 1$ such that

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - 16} = \frac{(x - 20)^2}{b^2 - 1} + \frac{(y - 11)^2}{b^2} = 1.$$


Find the least possible value of $a + b$.

The graph of $2x^2 + xy + 3y^2 - 11x - 20y + 40 = 0$ is an ellipse in the first quadrant of the xy -plane. Let a and b be the maximum and minimum values of $\frac{y}{x}$ over all points (x, y) on the ellipse. What is the value of $a + b$?

(A) 3 (B) $\sqrt{10}$ (C) $\frac{7}{2}$ (D) $\frac{9}{2}$ (E) $2\sqrt{14}$

The vertices of an equilateral triangle lie on the hyperbola $xy = 1$, and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?

(A) 48 (B) 60 (C) 108 (D) 120 (E) 169

